Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Front Public Health ; 12: 1339933, 2024.
Article in English | MEDLINE | ID: mdl-38504675

ABSTRACT

Introduction: The global human population is still growing such that our collective enterprise is driving environmental catastrophe. Despite a decline in average population growth rate, we are still experiencing the highest annual increase of global human population size in the history of our species-averaging an additional 84 million people per year since 1990. No review to date has accumulated the available evidence describing the associations between increasing population and environmental decline, nor solutions for mitigating the problems arising. Methods: We summarize the available evidence of the relationships between human population size and growth and environmental integrity, human prosperity and wellbeing, and climate change. We used PubMed, Google Scholar, and Web of Science to identify all relevant peer-reviewed and gray-literature sources examining the consequences of human population size and growth on the biosphere. We reviewed papers describing and quantifying the risks associated with population growth, especially relating to climate change. Results: These risks are global in scale, such as greenhouse-gas emissions, climate disruption, pollution, loss of biodiversity, and spread of disease-all potentially catastrophic for human standards of living, health, and general wellbeing. The trends increasing the risks of global population growth are country development, demographics, maternal education, access to family planning, and child and maternal health. Conclusion: Support for nations still going through a demographic transition is required to ensure progress occurs within planetary boundaries and promotes equity and human rights. Ensuring the wellbeing for all under this aim itself will lower population growth and further promote environmental sustainability.


Subject(s)
Health , Child , Humans , Educational Status
2.
Sci Total Environ ; 920: 170944, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38360325

ABSTRACT

BACKGROUND: Children are more vulnerable than adults to climate-related health threats, but reviews examining how climate change affects human health have been mainly descriptive and lack an assessment of the magnitude of health effects children face. This is the first systematic review and meta-analysis that identifies which climate-health relationships pose the greatest threats to children. OBJECTIVES: We reviewed epidemiologic studies to analyse various child health outcomes due to climate change and identify the relationships with the largest effect size. We identify population-specific risks and provide recommendations for future research. METHODS: We searched four large online databases for observational studies published up to 5 January 2023 following PRISMA (systematic review) guidelines. We evaluated each included study individually and aggregated relevant quantitative data. We used quantitative data in our meta-analysis, where we standardised effect sizes and compared them among different groupings of climate variables and health outcomes. RESULTS: Of 1301 articles we identified, 163 studies were eligible for analysis. We identified many relationships between climate change and child health, the strongest of which was increasing risk (60 % on average) of preterm birth from exposure to temperature extremes. Respiratory disease, mortality, and morbidity, among others, were also influenced by climate changes. The effects of different air pollutants on health outcomes were considerably smaller compared to temperature effects, but with most (16/20 = 80 %) pollutant studies indicating at least a weak effect. Most studies occurred in high-income regions, but we found no geographical clustering according to health outcome, climate variable, or magnitude of risk. The following factors were protective of climate-related child-health threats: (i) economic stability and strength, (ii) access to quality healthcare, (iii) adequate infrastructure, and (iv) food security. Threats to these services vary by local geographical, climate, and socio-economic conditions. Children will have increased prevalence of disease due to anthropogenic climate change, and our quantification of the impact of various aspects of climate change on child health can contribute to the planning of mitigation that will improve the health of current and future generations.


Subject(s)
Air Pollution , Child Health , Climate Change , Child , Humans , Air Pollution/adverse effects
3.
Mar Pollut Bull ; 198: 115855, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043202

ABSTRACT

Shark-human interactions are some of the most pervasive human-wildlife conflicts, and their frequencies are increasing globally. New South Wales (Australia) was the first to implement a broad-scale program of shark-bite mitigation in 1937 using shark nets, which expanded in the late 2010s to include non-lethal measures. Using 196 unprovoked shark-human interactions recorded in New South Wales since 1900, we show that bites shifted from being predominantly on swimmers to 79 % on surfers by the 1980s and increased 2-4-fold. We could not detect differences in the interaction rate at netted versus non-netted beaches since the 2000s, partly because of low incidence and high variance. Although shark-human interactions continued to occur at beaches with tagged-shark listening stations, there were no interactions while SMART drumlines and/or drones were deployed. Our effect-size analyses show that a small increase in the difference between mitigated and non-mitigated beaches could indicate reductions in shark-human interactions. Area-based protection alone is insufficient to reduce shark-human interactions, so we propose a new, globally transferable approach to minimise risk of shark bite more effectively.


Subject(s)
Bites and Stings , Sharks , Animals , Humans , Incidence , Australia , Bites and Stings/epidemiology , Animals, Wild
4.
Proc Natl Acad Sci U S A ; 121(1): e2311280120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147645

ABSTRACT

The dominant paradigm is that large tracts of Southeast Asia's lowland rainforests were replaced with a "savanna corridor" during the cooler, more seasonal climates of the Last Glacial Maximum (LGM) (23,000 to 19,000 y ago). This interpretation has implications for understanding the resilience of Asia's tropical forests to projected climate change, implying a vulnerability to "savannization". A savanna corridor is also an important foundation for archaeological interpretations of how humans moved through and settled insular Southeast Asia and Australia. Yet an up-to-date, multiproxy, and empirical examination of the palaeoecological evidence for this corridor is lacking. We conducted qualitative and statistical analyses of 59 palaeoecological records across Southeast Asia to test the evidence for LGM savannization and clarify the relationships between methods, biogeography, and ecological change in the region from the start of Late Glacial Period (119,000 y ago) to the present. The pollen records typically show montane forest persistence during the LGM, while δ13C biomarker proxies indicate the expansion of C4-rich grasslands. We reconcile this discrepancy by hypothesizing the expansion of montane forest in the uplands and replacement of rainforest with seasonally dry tropical forest in the lowlands. We also find that smooth forest transitions between 34,000 and 2,000 y ago point to the capacity of Southeast Asia's ecosystems both to resist and recover from climate stressors, suggesting resilience to savannization. Finally, the timing of ecological change observed in our combined datasets indicates an 'early' onset of the LGM in Southeast Asia from ~30,000 y ago.


Subject(s)
Ecosystem , Forests , Humans , Rainforest , Climate Change , Asia, Southeastern
5.
PLoS One ; 18(10): e0292854, 2023.
Article in English | MEDLINE | ID: mdl-37851652

ABSTRACT

The adverse impacts of alien birds are widespread and diverse, and associated with costs due to the damage caused and actions required to manage them. We synthesised global cost data to identify variation across regions, types of impact, and alien bird species. Costs amount to US$3.6 billion, but this is likely a vast underestimate. Costs are low compared to other taxonomic groups assessed using the same methods; despite underreporting, alien birds are likely to be less damaging and easier to manage than many other alien taxa. Research to understand why this is the case could inform measures to reduce costs associated with biological invasions. Costs are biassed towards high-income regions and damaging environmental impacts, particularly on islands. Most costs on islands result from actions to protect biodiversity and tend to be low and one-off (temporary). Most costs at mainland locations result from damage by a few, widespread species. Some of these costs are high and ongoing (permanent). Actions to restrict alien bird invasions at mainland locations might prevent high, ongoing costs. Reports increased sharply after 2010, but many are for local actions to manage expanding alien bird populations. However, the successful eradication of these increasingly widespread species will require a coordinated, international response.


Subject(s)
Biodiversity , Introduced Species , Animals , Population Dynamics , Birds/physiology , Ecosystem
6.
J Mammal ; 104(5): 929-940, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37800099

ABSTRACT

Decommissioning the dingo barrier fence has been suggested to reduce destructive dingo control and encourage a free transfer of biota between environments in Australia. Yet the potential impacts that over a century of predator exclusion might have had on the population dynamics and developmental biology of prey populations has not been assessed. We here combine demographic data and both linear and geometric morphometrics to assess differences in populations among 166 red kangaroos (Osphranter rufus)-a primary prey species of the dingo-from two isolated populations on either side of the fence. We also quantified the differences in aboveground vegetation biomass for the last 10 years on either side of the fence. We found that the age structure and growth patterns, but not cranial shape, differed between the two kangaroo populations. In the population living with a higher density of dingoes, there were relatively fewer females and juveniles. These individuals were larger for a given age, despite what seems to be lower vegetation biomass. However, how much of this biomass represented kangaroo forage is uncertain and requires further on-site assessments. We also identified unexpected differences in the ontogenetic trajectories in relative pes length between the sexes for the whole sample, possibly associated with male competition or differential weight-bearing mechanics. We discuss potential mechanisms behind our findings and suggest that the impacts of contrasting predation pressures across the fence, for red kangaroos and other species, merit further investigation.

7.
Bioscience ; 73(8): 560-574, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37680688

ABSTRACT

Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.

8.
PLoS Comput Biol ; 19(7): e1011268, 2023 07.
Article in English | MEDLINE | ID: mdl-37498846

ABSTRACT

Permafrost thawing and the potential 'lab leak' of ancient microorganisms generate risks of biological invasions for today's ecological communities, including threats to human health via exposure to emergent pathogens. Whether and how such 'time-travelling' invaders could establish in modern communities is unclear, and existing data are too scarce to test hypotheses. To quantify the risks of time-travelling invasions, we isolated digital virus-like pathogens from the past records of coevolved artificial life communities and studied their simulated invasion into future states of the community. We then investigated how invasions affected diversity of the free-living bacteria-like organisms (i.e., hosts) in recipient communities compared to controls where no invasion occurred (and control invasions of contemporary pathogens). Invading pathogens could often survive and continue evolving, and in a few cases (3.1%) became exceptionally dominant in the invaded community. Even so, invaders often had negligible effects on the invaded community composition; however, in a few, highly unpredictable cases (1.1%), invaders precipitated either substantial losses (up to -32%) or gains (up to +12%) in the total richness of free-living species compared to controls. Given the sheer abundance of ancient microorganisms regularly released into modern communities, such a low probability of outbreak events still presents substantial risks. Our findings therefore suggest that unpredictable threats so far confined to science fiction and conjecture could in fact be powerful drivers of ecological change.


Subject(s)
Biota , Introduced Species , Humans , Ecosystem
9.
Environ Sci Eur ; 35(1): 43, 2023.
Article in English | MEDLINE | ID: mdl-37325080

ABSTRACT

Background: Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. Results: We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. Conclusions: Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-023-00750-3.

10.
Glob Chang Biol ; 29(18): 5122-5138, 2023 09.
Article in English | MEDLINE | ID: mdl-37386726

ABSTRACT

The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.


Subject(s)
Ecosystem , Extinction, Biological , Humans , Food Chain , Models, Theoretical , Climate Change , Biodiversity
11.
Sci Rep ; 13(1): 10063, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344616

ABSTRACT

Helicopter-based shooting is an effective management tool for large vertebrate pest animals. However, animals in low-density populations and/or dense habitat can be difficult to locate visually. Thermal-imaging technology can increase detections in these conditions. We used thermal-imaging equipment with a specific helicopter crew configuration to assist in aerial culling for feral pigs (Sus scrofa) and fallow deer (Dama dama) in South Australia in 2021. Seventy-two percent of pigs and 53% of deer were first detected in dense canopy/tall forest habitat. Median time from the first impact shot to incapacitation was < 12 s. The culling rate (animals hour-1) doubled compared to visual shoots over the same populations and the wounding rate was zero resulting in a incapacitation efficiency of 100%. The crew configuration gave the shooter a wide field of view and the thermal operator behind the shooter provided essential support to find new and escaping animals, and to confirm species identification and successful removal. The crew configuration allowed for successful target acquisition and tracking, with reduced target escape. The approach can increase the efficiency of aerial culling, has the potential to increase the success of programs where eradication is a viable option, and can improve animal welfare outcomes by reducing wounding rates and the escape of target animals.


Subject(s)
Aircraft , Animal Culling , Animals, Wild , Deer , Sus scrofa , Thermography , Animals , Animal Culling/instrumentation , Animal Culling/methods , Australia , Forests , Hot Temperature , Islands , Thermography/instrumentation , Thermography/methods
12.
Ecol Evol ; 13(4): e10010, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37122772

ABSTRACT

Analysis of long-term trends in abundance of animal populations provides insights into population dynamics. Population growth rates are the emergent interplay of inter alia fertility, survival, and dispersal. However, the density feedbacks operating on some vital rates ("component feedback") can be decoupled from density feedbacks on population growth rates estimated using abundance time series ("ensemble feedback"). Many of the mechanisms responsible for this decoupling are poorly understood, thereby questioning the validity of using logistic-growth models versus vital rates to infer long-term population trends. To examine which conditions lead to decoupling, we simulated age-structured populations of long-lived vertebrates experiencing component density feedbacks on survival. We then quantified how imposed stochasticity in survival rates, density-independent mortality (catastrophes, harvest-like removal of individuals) and variation in carrying capacity modified the ensemble feedback in abundance time series simulated from age-structured populations. The statistical detection of ensemble density feedback from census data was largely unaffected by density-independent processes. Long-term population decline caused from density-independent mortality was the main mechanism decoupling the strength of component versus ensemble density feedbacks. Our study supports the use of simple logistic-growth models to capture long-term population trends, mediated by changes in population abundance, when survival rates are stochastic, carrying capacity fluctuates, and populations experience moderate catastrophic mortality over time.

13.
PLoS One ; 18(2): e0280260, 2023.
Article in English | MEDLINE | ID: mdl-36812163

ABSTRACT

Although average contraceptive use has increased globally in recent decades, an estimated 222 million (26%) of women of child-bearing age worldwide face an unmet need for family planning-defined as a discrepancy between fertility preferences and contraception practice, or failing to translate desires to avoid pregnancy into preventative behaviours and practices. While many studies have reported relationships between availability/quality of contraception and family planning, infant mortality, and fertility, these relationships have not been evaluated quantitatively across a broad range of low- and middle-income countries. Using publicly available data from 64 low- and middle-income countries, we collated test and control variables in six themes: (i) availability of family planning, (ii) quality of family planning, (iii) female education, (iv) religion, (v) mortality, and (vi) socio-economic conditions. We predicted that higher nation-level availability/quality of family-planning services and female education reduce average fertility, whereas higher infant mortality, greater household size (a proxy for population density), and religious adherence increase it. Given the sample size, we first constructed general linear models to test for relationships between fertility and the variables from each theme, from which we retained those with the highest explanatory power within a final general linear model set to determine the partial correlation of dominant test variables. We also applied boosted regression trees, generalised least-squares models, and generalised linear mixed-effects models to account for non-linearity and spatial autocorrelation. On average among all countries, we found the strongest associations between fertility and infant mortality, household size, and access to any form of contraception. Higher infant mortality and household size increased fertility, whereas greater access to any form of contraception decreased fertility. Female education, home visitations by health workers, quality of family planning, and religious adherence all had weak, if any, explanatory power. Our models suggest that decreasing infant mortality, ensuring sufficient housing to reduce household size, and increasing access to contraception will have the greatest effect on decreasing global fertility. We thus provide new evidence that progressing the United Nation's Sustainable Development Goals for reducing infant mortality can be accelerated by increasing access to family planning.


Subject(s)
Contraception , Developing Countries , Family Planning Services , Fertility , Population Dynamics , Female , Humans , Contraception Behavior , Demography , Developing Countries/statistics & numerical data , Health Services Accessibility , Infant Mortality , Population Dynamics/trends , Socioeconomic Factors , Infant, Newborn
14.
Ecology ; 104(1): e3888, 2023 01.
Article in English | MEDLINE | ID: mdl-36208280

ABSTRACT

Lipid and fatty acid datasets are commonly used to assess the nutritional composition of organisms, trophic ecology, and ecosystem dynamics. Lipids and their fatty acid constituents are essential nutrients to all forms of life because they contribute to biological processes such as energy flow and metabolism. Assessment of total lipids in tissues of organisms provides information on energy allocation and life-history strategies and can be an indicator of nutritional condition. The analysis of an organism's fatty acids is a widely used technique for assessing nutrient and energy transfer, and dietary interactions in food webs. Although there have been many published regional studies that assessed lipid and fatty acid compositions, many only report the mean values of the most abundant fatty acids. There are limited individual records available for wider use in intercomparison or macro-scale studies. This dataset consists of 4856 records of individual and pooled samples of at least 470 different marine consumer species sampled from tropical, temperate, and polar regions around Australia and in the Southern, Indian, and Pacific Oceans from 1989 to 2018. This includes data for a diverse range of taxa (zooplankton, fish, cephalopods, chondrichthyans, and marine mammals), size ranges (0.02 cm to ~13 m), and that cover a broad range of trophic positions (2.0-4.6). When known, we provide a record of species name, date of sampling, sampling location, body size, relative (%) measurements of tissue-specific total lipid content and abundant fatty acids, and absolute content (mg 100 g-1 tissue) of eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3) as important long-chain (≥C20 ) polyunsaturated omega-3 fatty acids. These records form a solid basis for comparative studies that will facilitate a broad understanding of the spatial and temporal distribution of marine lipids globally. The dataset also provides reference data for future dietary assessments of marine predators and model assessments of potential impacts of climate change on the availability of marine lipids and fatty acids. There are 480 data records within our data file for which the providers have requested that permission for reuse be granted, with the likely condition that they are included as a coauthor on the reporting of the dataset. Records with this condition are indicated by a "yes" under "Conditions_of_data_use" in Data S1: Marineconsumer_FAdata.csv (see Table 2 in Metadata S1 for more details). For all other data records marked as "No" under "Conditions_of_data_use," there are no copyright restrictions for research and/or teaching purposes. We request that users acknowledge use of the data in publications, research proposals, websites, and other outlets via formal citation of this work and original data sources as applicable.


Subject(s)
Ecosystem , Fatty Acids , Animals , Fatty Acids/analysis , Fatty Acids/metabolism , Food Chain , Fishes , Zooplankton , Mammals
15.
Sci Adv ; 8(50): eabn4345, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36525487

ABSTRACT

Although theory identifies coextinctions as a main driver of biodiversity loss, their role at the planetary scale has yet to be estimated. We subjected a global model of interconnected terrestrial vertebrate food webs to future (2020-2100) climate and land-use changes. We predict a 17.6% (± 0.16% SE) average reduction of local vertebrate diversity globally by 2100, with coextinctions increasing the effect of primary extinctions by 184.2% (± 10.9% SE) on average under an intermediate emissions scenario. Communities will lose up to a half of ecological interactions, thus reducing trophic complexity, network connectance, and community resilience. The model reveals that the extreme toll of global change for vertebrate diversity might be of secondary importance compared to the damages to ecological network structure.

17.
Sci Data ; 9(1): 378, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794151

ABSTRACT

We describe the Australian Shark-Incident Database, formerly known as the Australian Shark-Attack File, which contains comprehensive reports of 1,196 shark bites that have occurred in Australia over 231 years (1791-2022). Data were collated by the Taronga Conservation Society Australia using purpose-designed questionnaires provided to shark-bite victims or witnesses, media reports, and information provided by the department responsible for fisheries in each Australian state (including the Northern Territory). The dataset includes provoked and unprovoked bites from fresh, brackish, and marine waters in Australia. Data span 22 suspected shark species. This dataset will be publicly available, and can be used by analysts to decipher environmental, biological, and social patterns of shark bites in Australia. The information will aid scientists, conservationists, authorities, and members of the public to make informed decisions when implementing or selecting mitigation measures.


Subject(s)
Bites and Stings , Sharks , Animals , Bites and Stings/epidemiology , Databases, Factual , Fisheries , Humans , Northern Territory
19.
PLoS One ; 16(9): e0257141, 2021.
Article in English | MEDLINE | ID: mdl-34506560

ABSTRACT

The pursuit of simple, yet fair, unbiased, and objective measures of researcher performance has occupied bibliometricians and the research community as a whole for decades. However, despite the diversity of available metrics, most are either complex to calculate or not readily applied in the most common assessment exercises (e.g., grant assessment, job applications). The ubiquity of metrics like the h-index (h papers with at least h citations) and its time-corrected variant, the m-quotient (h-index ÷ number of years publishing) therefore reflect the ease of use rather than their capacity to differentiate researchers fairly among disciplines, career stage, or gender. We address this problem here by defining an easily calculated index based on publicly available citation data (Google Scholar) that corrects for most biases and allows assessors to compare researchers at any stage of their career and from any discipline on the same scale. Our ε'-index violates fewer statistical assumptions relative to other metrics when comparing groups of researchers, and can be easily modified to remove inherent gender biases in citation data. We demonstrate the utility of the ε'-index using a sample of 480 researchers with Google Scholar profiles, stratified evenly into eight disciplines (archaeology, chemistry, ecology, evolution and development, geology, microbiology, ophthalmology, palaeontology), three career stages (early, mid-, late-career), and two genders. We advocate the use of the ε'-index whenever assessors must compare research performance among researchers of different backgrounds, but emphasize that no single index should be used exclusively to rank researcher capability.


Subject(s)
Access to Information , Career Mobility , Publications , Research Personnel , Algorithms , Female , Humans , Male , Sex Characteristics
20.
R Soc Open Sci ; 8(3): 201197, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-34035935

ABSTRACT

Despite the low chance of a person being bitten by a shark, there are serious associated costs. Electronic deterrents are currently the only types of personal deterrent with empirical evidence of a substantial reduction in the probability of being bitten by a shark. We aimed to predict the number of people who could potentially avoid being bitten by sharks in Australia if they wear personal electronic deterrents. We used the Australian Shark Attack File from 1900 to 2020 to develop sinusoidal time-series models of per capita incidents, and then stochastically projected these to 2066. We predicted that up to 1063 people (range: 185-2118) could potentially avoid being bitten across Australia by 2066 if all people used the devices. Avoiding death and injury of people over the next half-century is of course highly desirable, especially when considering the additional costs associated with the loss of recreational, commercial and tourism revenue potentially in the tens to hundreds of millions of dollars following clusters of shark-bite events.

SELECTION OF CITATIONS
SEARCH DETAIL
...